
International Journal of Computer Trends and Technology Volume 72 Issue 8, 98-103, August 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I8P114 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Practical Overview of Real-Time System

Implementation in Linux Kernel

Shobhit Kukreti1, Priyank Singh2, Tanvi Hungund3

1Carnegie Mellon University, PA, USA.

2Rochester Institute of Technology, NY, USA.
3Cal State Fullerton, CA, USA.

1Corresponding Author : skukreti@ieee.org

Received: 17 June 2024 Revised: 21 July 2024 Accepted: 10 August 2024 Published: 30 August 2024

Abstract - Over the years, in the system software world, Real-Time Systems[1] have made a large impact in a variety of

applications, including mission-critical environments. Such applications typically require a predictable response in a timely

fashion to be successful. In areas like aerospace, medical robotics, industrial automation and telecommunications, real-time

systems real-time systems have had the biggest impact. Recent trends like autonomous vehicles and smart grids facilitate seamless

and reliable operations between components. As technology advances, Real-Time Systems have become a fundamental building

block that is often hidden and mostly misunderstood. This paper intends to shed light on real-time systems while also adding an

implementation of Rate Monotonic Systems[2] in Linux Kernel[3].

Keywords - Linux kernel, Real-time system, Operating system, Rate monotonic scheduling, Task management.

1. Introduction
A real-time system is a type of computer system which

has strict timing constraints when executing it’s task.

Therefore, while the logical correctness of the output is of

importance, its temporal correctness is of the same

importance. For instance, an automotive braking action should

be completed within a specific time period when the system

applies the braking input. Broadly, real-time systems are of

two types: hard and soft. Hard real-time systems result in

catastrophic failure if the timing constraints are not met, as

mentioned in the example above.

However, soft real-time systems, while still being time-

sensitive, do not cause the same catastrophic failure. An

example of a soft-real time system is an online video

streaming application where if a certain video frame is missed,

it may reduce the video quality.

The rest of the article is defined as follows:

Section II gives a summary overview of the real-time

system. Section III demonstrates the Linux Driver

development to add real-time characteristics to a non-real-

time system. Section IV shall be the result and conclusion,

followed by references.

2. Overview of Real-Time Systems
Fig 1. describes a typical operating system[4] stack. It has

user applications, a library which abstracts away all the

complex APIs exposed by the kernel.

In the same context, the real-time system software stack

will look similar to the one shown in Figure 1, with certain

optimization, extensions added to the Scheduler and Task

Management.

Fig. 1 Operating system

User App 0 User App 1 User App 2

LIBC

System Call Interface

Scheduler
Task

Management
Memory
Manager

Kernel

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shobhit Kukreti et al. / IJCTT, 72(8), 98-103, 2024

99

The user application requests access to a hardware

resource via means of a System Call. System Call switches the

operating system mode from, say, user to a Privileged mode

where hardware resources can be accessed via device driver(s),

amongst other operations of the kernel.

In a Real-Time Embedded System (RTES), the services it

performs are well-defined and known prior to the deployment.

This is somewhat necessary since the criticality of service

needs to be known prior to deployment. Each service can be

considered a software task (job).

Every task has a timing constraint. The timing constraint

is specified in terms of the deadline before which the task

needs to be completed. Based on the criticality of a task and

whether the deadline can be missed, the RTES can fall into two

categories: Hard or soft Real-time Time Systems.

2.1. Hard Real-Time Systems

In hard real-time systems, missing a deadline is

unacceptable. These systems are found in environments where

timing precision is critical, as in life-support systems or

automotive airbag controls. Missing a deadline can lead to

catastrophic failures, necessitating deterministic scheduling

algorithms.

Characteristics:
Schedulability: The tasks should meet their timing constraints.

Low Latency: Deterministic worst-case response time.

Error Handling: Error handling to prevent system failure due

to missed deadlines.

2.2. Soft Real-Time Systems

Soft real-time systems, while still time-sensitive, allow for

some flexibility. Missing a deadline results in degraded

performance rather than catastrophic failure. Systems such as

online video streaming are deemed soft real-time.

Characteristics:

Adaptive Scheduling: Dynamic scheduling algorithms adjust

based on workload, providing flexibility in meeting deadlines.

Graceful Degradation: Performance drops are handled in a way

that allows the system to continue operating.

Resource Efficiency: These systems optimize resource usage

to balance performance with timing constraints.

There are broadly two classes of algorithms, clock-driven

and priority-based as shown in Figure 2.

Table 1. Clock driven algorithm

First Come, First Serve
Non-preemptive Tasks run in

the order of arrival.

Round Robin
The task receives a fixed

quantum of the CPU to run.

Fig 2. Scheduling algorithms

Table 2. Fixed priority preemptive algorithm

Rate Monotonic Scheduling

Priorities are assigned based

on the rate of the periodic

task. The lower the time

period, the higher the priority.

Deadline Monotonic

Scheduling

Tasks are assigned priority

based on deadline. Shorter

deadlines have a higher

priority.

Shortest Job Scheduling

Task priority is based on the

run-time of the process.

Lower run-time receives

higher priority.

Multi-Queue Round Robin

Multiple queues with

different time quanta. Tasks

are added to a queue based on

priority.

Table 3. Dynamic priority preemptive algorithm

Earliest Deadline First

The task is assigned priority

based on a deadline. Shorter

deadlines have higher

priority. Priority changes on

the fly.

Utilization (U) = Compute Time (C) / Time Period (T).

The sum of utilization of all tasks should be less than 100%.

2.3. Rate Monotonic Scheduling
It is an optimal fixed scheduling policy, i.e. if a set of tasks

cannot be scheduled by Rate Monotonic policy, then it may not

be schedulable by any other fixed priority algorithms.

It is proven by Liu and Layland[5] that under Rate

Monotonic policy, a set of tasks is only schedulable if their

utilization is up to 69.3%.

Scheduling

Algorithm

Clock

Driven /

No Priority

Priority

Scheduling

Fixed

Priority

Dynamic

Priority

Shobhit Kukreti et al. / IJCTT, 72(8), 98-103, 2024

100

Table 4. Number of Tasks vs Utilization (Upper Bound Test)

Num Tasks Utilization

1 1

2 0.828

3 0.780

4 0.757

5 0.743

6 0.735

…..

∞ 0.693

Table 5. Sample task set

Tasks C T U

T1 4 10 0.4

T2 4 15 0.27

T3 10 35 0.29

T1 has higher priority than T2, T2 has higher priority

than T3 based on their time period (T)

Here, a set of T1 and T2 together are schedulable as

utilization of 0.67 < 0.828 from Table 4.

T1, T2, and T3 all together have a utilization of 0.96,

which is greater than 0.780 when the number of tasks (n) = 3.

Hence, the task set is not schedulable under the upper bound

test.

Response Time (RT) test has to be applied when a set is

not schedulable under the Upper Bound test. However, we will

use the upper bound test when implementing the RMS policy

in Linux.

3. Implementation
Several CPU scheduling policies are supported in a

modern kernel, each tailored to manage particular kinds of

workloads effectively. In Linux systems where real-time

processes are not required, the Completely Fair Scheduler

(CFS) predominantly handles the CPU scheduling tasks. CFS

is a widely used scheduler. It consists of sophisticated

heuristics that aim to optimize performance across a diverse

array of workloads. CFS offers various adjustable parameters

to fine-tune its policy. Despite its complexity and adaptability,

CFS may not satisfy all use cases which is a testament to the

challenges in CPU scheduling.

In this section, we will discuss steps about implementing

a real-time system by extending the Linux kernel. To put it

succinctly, at the implementation level, an RTS requires task

management based on the parameters (C,T) set by the system

architect. The values of C,T are system-dependent and

requirement-dependent.

3.1. Task Management
A task can be in one of the multiple states on its inception,

such as Ready, Running, Waiting and Exiting. A new task when

created, is added to the Ready Queue. When the scheduler

tick/irq occurs, the scheduler picks the next task to run. In our

RTS system, recall that we shall pick the state based on the

higher rate of occurrence as a higher priority.

Fig. 3 Life of a Task in OS -

Fig. 4 Task control block

Fig. 5 Linux TCB

struct task_struct {
unsigned int__state;
unsigned intflags;
....
intprio;
….
struct pid *thread_pid;

/* Monotonic time in nsecs: */
u64 start_time;
.....
};

Task State

Task ID

HW Register State

Memory View

Scheduling Property

File Pointers

New

Task
Exit

Ready Running

Sched

IRQ

Waiting

Waiting for

HW

Resource

Shobhit Kukreti et al. / IJCTT, 72(8), 98-103, 2024

101

Every task is described with a Task Control Block (TCB).

A TCB describes the task’s current state, its scheduling

attributes, open file references, hardware register state, and the

memory it can access. On Linux Kernel which is our target

platform for implementation, the TCB is defined with a struct

task_struct. Figure 5 shows the task_struct with a few

attributes displayed.

Based on the information we have about the task state and

TCB, task_struct from Linux, we will add our own parallel OS

within the kernel space.

1. We add a new system call for our driver. This is required

by the user-space application to specify three parameters.

• Process ID or PID

• Worst Case Execution Time or ‘C’ in msec

• Time Period or ‘T’ in msec

2. The linux kernel calls a function called context_switch

(task_struct *old, task_struct *new) when it switches

between tasks. We add a hook here which calls a function

called force_rt() in our driver.

3. Setup code for Linux High-Resolution Timer[6]. We start

an hour timer with a tick of 10 microseconds

(configurable).

4. Implement the RMS Upper Bound Algorithm with a

partitioned scheduler scheme in which task sets are

grouped together to run on certain cores of the CPU.

5. Add sysfs entries show() to show our driver’s internal

state.

Fig. 6 RTS driver data structure

Figure 6 shows the design of the driver queue data

structure. It holds the process ID, user-specified timing

constraints, actual time spent by the task running on the system

and some attributes required for the Linux sysfs framework.

Fig. 7 Code snippet of the system call

Our Linux HR Timer callback forms the basis of the

system tick of our implementation. In the hr_timer_callback

struct rt_sched_queue {
struct task_struct *tsk;
struct rt_sched_queue *next, *prev, *cpuq;
int utils;
// capture actual time spent
struct timespec cts, pts, ets, rawts, rawets, rawpts;
spinlock_t lock;
int state, ctimer_state, ptimer_state, raised_exit;
// specified by user
int e_time, c_time, p_time;
pid_t pid;
struct kobject pid_kobj;
….
};

asmlinkage long sys_rt(pid_t procid, int comp_time, int

period)
{
sched_queue *tmp;
// check if dup exit for the pid
tmp = check_dup(&runqueue, (pid_t)procid);
if (tmp !=NULL) return -1;

tmp = create_node();

tmp->pid = procid;
tmp->c_time = comp_time;
tmp->p_time = period;

tmp->tmr_c.timer_callback = &c_callback;
tmp->state = TSK_RUN;

tmp->ctimer_state = CLK_STOP;
tmp->ptimer_state = CLK_STOP;

struct task_struct *tsk =
 find_task_by_vpid(procid);

// raise the priority of our task
tsk->prio = 105;
// Set the scheduling policy as Round Robin
tsk->policy = SCHED_RR;

/* Insert Node in Per processor Queue */

// Worst Fit Descreasing Packaging per Core
if (wfd_packing() == -1) {
 delete_node(procid);
 return -1;
}
// create sysfs entry for user view
create_pid_sysfs(tmp);

// Assign task set per CPU Core RunQueue
if (assign_task_core(cpu0, 4) != 0)
pr_err("new Task Set Not Schedulable");

if (assign_task_core(cpu1, 5) != -1)
pr_err("new Task Set Not Schedulable");
if (assign_task_core(cpu2, 6) != -1)
pr_err("new Task Set Not Schedulable");
if (assign_task_core(cpu3, 7) != -1)
pr_err("new Task Set Not Schedulable");
...

}

Shobhit Kukreti et al. / IJCTT, 72(8), 98-103, 2024

102

we iterate over all the task(s) in our queue advance the running

‘C’ and ‘T’ values. Once a task has finished its ‘C’ execution

units, we call the per task assigned callbacks to move the Task

into a TASK_SUSPENDED state. Similarly, when a task

finishes overall of ‘T’ units, it is woken up and added back to

the ready queue.

Fig. 8 Main call back of HR timer

We use bin packing heuristics to pack the task in a set

which will run on a specific core. By setting the CPU affinity

of a task, we bind the task to a core. Recall that your upper

bound test means we can only load our code to 69.3%

utilization to achieve RMS.

In our code implementation, we pick the Worst Fit

Heuristic. The Worst Fit Decreasing (WFD) heuristic is a

strategy used in bin packing problems to minimize the number

of bins required. This heuristic involves two primary steps:

sorting the items in descending order based on size and then

applying the Worst Fit method. In the Worst Fit method, each

item is placed in the bin with the most remaining space that

can still accommodate the item. By prioritizing the emptiest

bins, the WFD heuristic tends to distribute items more evenly

across the available bins compared to other methods. This

forms the basis of our simple algorithm of sorting the tasks and

then placing them in sets (buckets) assigned to a core.

4. Result andConclusion
With our algorithm in place and the driver compiled into

the kernel. We create some user applications which we would

want to adhere to the RMS policy.

Figure 9 shows the internal state of our driver, which is

managing tasks identified by the PID (P).

C_ms and T_ms are the user-specified real-time

constraints. RC and RT values indicate the actual time spent by

the task in the kernel either running, waiting or suspended.

‘pre’ number tells us how many times the kernel switched out

the task. The kernel exports RC and RT values to user space

via sysfs. The above result indicates that:

(C/T) == (RC/RT)

Fig. 9 Result

It means that the utilization which the user specified is

what our real time driver was able to achieve for the user-task.

While our implementation worked, we made some

assumptions about no tasks accessing a shared resource. If

there is a lock shared across two tasks with both of them

accessing the shared resource, if the lower priority task

acquires the mutex, then it leads to priority inversion.

In our case, it will lead to the violation of the timing

constraints. There are locking protocols, such as Priority

Inheritance Protocol and Highest Locker Protocol, but that is

outside the scope of our current implementation and will be

considered in the next implementation.

Our work is inspired from Linux/RK work done at

Carnegie Mellon University[7].

References
[1] Real-Time Systems Overview, “Discover the Impact Real-Time Systems Have on Internet of Things Applications in Industries Ranging

from Manufacturing to Healthcare to Oil and Gas and Robotics,” Intel, 2019. [Online]. Available:

https://www.intel.com/content/www/us/en/robotics/real-time-systems.html

[2] J. Santos, and J. Orozco, “Rate Monotonic Scheduling in Hard Real-Time Systems,” Information Processing Letters, vol. 48, no. 1, pp.

39-45, 1993. [CrossRef] [Google Scholar] [Publisher Link]

[3] The Linux Kernel Archives, Kernel, 2024. [Online]. Available: www.kernel.org

[4] Norman F. Schneidewind, Operating Systems, Wiley-IEEE Press, pp. 286-302, 2012. [CrossRef] [Publisher Link]

[5] C. L. Liu, and James W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment,” Journal of the ACM

(JACM), vol. 20, no. 1, pp. 41-61, 1973. [CrossRef] [Google Scholar] [Publisher Link]

void os_callback(void)
{
sched_queue *node = runqueue;

while (node != NULL) {
 if (node->tmr_c.fired == true) {
 node->tmr_c.timer_callback(node);
 node->tmr_c.fired = false;
 node->tmr_c.active = false;
 }
 if (node->tmr_p.fired == true) {
 node->tmr_p.timer_callback(node);
 node->tmr_p.fired = false;
 }
node = node->next;
}
}

https://doi.org/10.1016/0020-0190(93)90266-C
https://scholar.google.com/scholar?cluster=3729132146335979380&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/002001909390266C?via%3Dihub
https://doi.org/10.1002/9781118181287.ch10
https://onlinelibrary.wiley.com/doi/10.1002/9781118181287.ch10
https://doi.org/10.1145/321738.321743
https://scholar.google.com/scholar?cluster=11972780054098474552&hl=en&as_sdt=0,5
https://dl.acm.org/doi/10.1145/321738.321743

Shobhit Kukreti et al. / IJCTT, 72(8), 98-103, 2024

103

[6] Hrtimers - Subsystem for High-Resolution Kernel Timers, The Linux kernel, 2024. [Online]. Available:

https://docs.kernel.org/timers/hrtimers.html

[7] Linux/Rk, Real Time and Multimedia Systems Lab, 2024. [Online]. Available: http://www.cs.cmu.edu/~rtml/

